Automated Machine Learning : Methods, Systems, Challenges
Saved in:
Corporate Author: | |
---|---|
Other Authors: | |
Special Collection: | e-book |
Format: | Book |
Language: | English |
Published: |
Cham : Springer International Publishing,
2019
|
Series: | The Springer Series on Challenges in Machine Learning, ISSN 2520-131X |
Subjects: | |
Online Access: | http://doi.org/10.1007/978-3-030-05318-5 |
Tags: |
Add Tag
Be the first to tag this record!
|
LEADER | nam a22 c 4500 | ||
---|---|---|---|
001 | 001012984 | ||
005 | 20210413152323.0 | ||
007 | cr nn 008mamaa | ||
008 | 190517s2019 gw adf fsb 000 0 eng d | ||
020 | |a 978-3-030-05318-5 | ||
024 | 7 | |a 10.1007/978-3-030-05318-5 |2 doi | |
040 | |a Springer |b hun |d ELTE | ||
041 | 0 | |a eng | |
050 | 4 | |a Q334-342 | |
082 | 0 | 4 | |a 006.3 |2 23 |
245 | 0 | 0 | |a Automated Machine Learning |b Methods, Systems, Challenges |c edited by Frank Hutter, Lars Kotthoff, Joaquin Vanschoren. |
260 | |a Cham |b Springer International Publishing |c 2019 | ||
300 | |a XIV, 219 p. 54 illusztrált, 45 illusztrált szinesben |b online forrás | ||
336 | |a szöveg |b txt |2 rdacontent | ||
337 | |a számítógépes |b c |2 rdamedia | ||
338 | |a távoli hozzáférés |b cr |2 rdacarrier | ||
347 | |a szövegfájl |b PDF |2 rda | ||
490 | 1 | |a The Springer Series on Challenges in Machine Learning |x 2520-131X | |
505 | 0 | |a 1 Hyperparameter Optimization -- 2 Meta-Learning -- 3 Neural Architecture Search -- 4 Auto-WEKA -- 5 Hyperopt-Sklearn -- 6 Auto-sklearn -- 7 Towards Automatically-Tuned Deep Neural Networks -- 8 TPOT -- 9 The Automatic Statistician -- 10 AutoML Challenges. | |
520 | |a This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work. | ||
580 | |a Nyomtatott kiadás: ISBN 9783030053178 | ||
580 | |a Nyomtatott kiadás: ISBN 9783030053192 | ||
506 | |a Az e-könyvek a teljes ELTE IP-tartományon belül online elérhetők. | ||
595 | |a e-book | ||
598 | |a könyv | ||
650 | 0 | 4 | |a optikai adatfeldolgozás |
650 | 0 | 4 | |a alakfelismerés |
650 | 0 | |a Artificial intelligence. | |
650 | 0 | |a Optical data processing. | |
650 | 0 | |a Pattern recognition. | |
653 | |a elektronikus könyv | ||
700 | 1 | |a Hutter, Frank |e szerk. | |
700 | 1 | |a Kotthoff, Lars |e szerk. | |
700 | 1 | |a Vanschoren, Joaquin |e szerk. | |
710 | 2 | |a SpringerLink (Online service) |e közreadó testület | |
830 | 0 | |a The Springer Series on Challenges in Machine Learning | |
856 | 4 | 0 | |y Online változat |u http://doi.org/10.1007/978-3-030-05318-5 |
850 | |a B2 | ||
264 | 1 | |a Cham |b Springer International Publishing |b Imprint: Springer, |c 2019 |