Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics

Saved in:
Bibliographic Details
Main Author:
Corporate Author:
Special Collection:e-book
Format: Book
Published: Tokyo : : Springer Japan : Imprint: Springer,, 2018
Edition:1st ed. 2018.
Series:JSS Research Series in Statistics,, ISSN 2364-0057
Online Access:
Tags: Add Tag
Be the first to tag this record!
LEADER nam a22 c 4500
001 000979837
005 20191115135450.0
007 cr nn 008mamaa
008 180712s2018 ja | s |||| 0|eng d
020 |a 978-4-431-55888-0 
024 7 |a 10.1007/978-4-431-55888-0  |2 doi 
040 |a Springer  |b hun  |c ELTE 
041 0 |a eng 
050 4 |a QA276-280 
082 0 4 |a 519.5  |2 23 
100 1 |a Mano, Shuhei.  |e szerző  |4 aut  |4 
245 1 0 |a Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics  |c by Shuhei Mano. 
250 |a 1st ed. 2018. 
260 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2018 
300 |a VIII, 135 p. 9 illus.  |b online forrás 
336 |a szöveg  |b txt  |2 rdacontent 
337 |a számítógépes  |b c  |2 rdamedia 
338 |a távoli hozzáférés  |b cr  |2 rdacarrier 
347 |a szövegfájl  |b PDF  |2 rda 
490 1 |a JSS Research Series in Statistics,  |x 2364-0057 
520 |a This book focuses on statistical inferences related to various combinatorial stochastic processes. Specifically, it discusses the intersection of three subjects that are generally studied independently of each other: partitions, hypergeometric systems, and Dirichlet processes. The Gibbs partition is a family of measures on integer partition, and several prior processes, such as the Dirichlet process, naturally appear in connection with infinite exchangeable Gibbs partitions. Examples include the distribution on a contingency table with fixed marginal sums and the conditional distribution of Gibbs partition given the length. The A-hypergeometric distribution is a class of discrete exponential families and appears as the conditional distribution of a multinomial sample from log-affine models. The normalizing constant is the A-hypergeometric polynomial, which is a solution of a system of linear differential equations of multiple variables determined by a matrix A, called A-hypergeometric system. The book presents inference methods based on the algebraic nature of the A-hypergeometric system, and introduces the holonomic gradient methods, which numerically solve holonomic systems without combinatorial enumeration, to compute the normalizing constant. Furher, it discusses Markov chain Monte Carlo and direct samplers from A-hypergeometric distribution, as well as the maximum likelihood estimation of the A-hypergeometric distribution of two-row matrix using properties of polytopes and information geometry. The topics discussed are simple problems, but the interdisciplinary approach of this book appeals to a wide audience with an interest in statistical inference on combinatorial stochastic processes, including statisticians who are developing statistical theories and methodologies, mathematicians wanting to discover applications of their theoretical results, and researchers working in various fields of data sciences. 
580 |a Nyomtatott kiadás: ISBN 9784431558866 
580 |a Nyomtatott kiadás: ISBN 9784431558873 
506 |a Az e-könyvek a teljes ELTE IP-tartományon belül online elérhetők. 
598 |a könyv 
595 |a e-book 
650 0 |a Mathematical statistics. 
650 0 |a Statistics. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
653 |a elektronikus könyv 
710 2 |a SpringerLink (Online service)  |e közreadó testület 
830 0 |a JSS Research Series in Statistics,  |x 2364-0057 
856 4 0 |y Online változat  |u 
850 |a B2 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2018