Singular Spectrum Analysis with R

Saved in:
Bibliographic Details
Main Author:
Corporate Author:
Other Authors:
Special Collection:e-book
Format: Book
Language:English
Published: Berlin, Heidelberg : : Springer Berlin Heidelberg : Imprint: Springer,, 2018
Edition:1st ed. 2018.
Series:Use R!,, ISSN 2197-5736
Subjects:
Online Access:https://doi.org/10.1007/978-3-662-57380-8
Tags: Add Tag
Be the first to tag this record!
LEADER nam a22 c 4500
001 000979537
005 20191115111249.0
007 cr nn 008mamaa
008 180614s2018 gw | s |||| 0|eng d
020 |a 978-3-662-57380-8 
024 7 |a 10.1007/978-3-662-57380-8  |2 doi 
040 |a Springer  |b hun  |c ELTE 
041 0 |a eng 
050 4 |a QA276-280 
082 0 4 |a 519.5  |2 23 
100 1 |a Golyandina, Nina.  |e szerző  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Singular Spectrum Analysis with R  |c by Nina Golyandina, Anton Korobeynikov, Anatoly Zhigljavsky. 
250 |a 1st ed. 2018. 
260 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2018 
300 |a XIII, 272 p. 121 illus., 106 illus. in color.  |b online forrás 
336 |a szöveg  |b txt  |2 rdacontent 
337 |a számítógépes  |b c  |2 rdamedia 
338 |a távoli hozzáférés  |b cr  |2 rdacarrier 
347 |a szövegfájl  |b PDF  |2 rda 
490 1 |a Use R!,  |x 2197-5736 
505 0 |a Preface -- Common symbols and acronyms -- Contents -- 1 Introduction: Overview -- 2 SSA analysis of one-dimensional time series -- 3 Parameter estimation, forecasting, gap filling -- 4 SSA for multivariate time series -- 5 Image processing -- Index -- References. 
520 |a This comprehensive and richly illustrated volume provides up-to-date material on Singular Spectrum Analysis (SSA). SSA is a well-known methodology for the analysis and forecasting of time series. Since quite recently, SSA is also being used to analyze digital images and other objects that are not necessarily of planar or rectangular form and may contain gaps. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas, most notably those associated with time series and digital images. An effective, comfortable and accessible implementation of SSA is provided by the R-package Rssa, which is available from CRAN and reviewed in this book. Written by prominent statisticians who have extensive experience with SSA, the book (a) presents the up-to-date SSA methodology, including multidimensional extensions, in language accessible to a large circle of users, (b) combines different versions of SSA into a single tool, (c) shows the diverse tasks that SSA can be used for, (d) formally describes the main SSA methods and algorithms, and (e) provides tutorials on the Rssa package and the use of SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The book is written on a level accessible to a broad audience and includes a wealth of examples; hence it can also be used as a textbook for undergraduate and postgraduate courses on time series analysis and signal processing. 
580 |a Nyomtatott kiadás: ISBN 9783662573785 
580 |a Nyomtatott kiadás: ISBN 9783662573792 
506 |a Az e-könyvek a teljes ELTE IP-tartományon belül online elérhetők. 
598 |a könyv 
595 |a e-book 
650 0 |a Mathematical statistics. 
650 0 |a Computer vision. 
650 0 |a Computer software. 
650 0 |a Statistics. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Mathematical Software. 
650 2 4 |a Statistics for Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
653 |a elektronikus könyv 
700 1 |a Korobeynikov, Anton.  |e szerző  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhigljavsky, Anatoly.  |e szerző  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service)  |e közreadó testület 
830 0 |a Use R!,  |x 2197-5736 
856 4 0 |y Online változat  |u https://doi.org/10.1007/978-3-662-57380-8 
850 |a B2 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2018