Nonparametric Statistics : : 3rd ISNPS, Avignon, France, June 2016

Saved in:
Bibliographic Details
Corporate Author:
Other Authors:
Special Collection:e-book
Format: Book
Published: Cham : : Springer International Publishing : Imprint: Springer,, 2018
Edition:1st ed. 2018.
Series:Springer Proceedings in Mathematics & Statistics,, ISSN 2194-1009 ; ; 250
Online Access:
Tags: Add Tag
Be the first to tag this record!
LEADER nam a22 c 4500
001 000979256
005 20191127121957.0
007 cr nn 008mamaa
008 190308s2018 gw | s |||| 0|eng d
020 |a 978-3-319-96941-1 
024 7 |a 10.1007/978-3-319-96941-1  |2 doi 
040 |a Springer  |b hun  |c ELTE 
041 0 |a eng 
050 4 |a QA276-280 
082 0 4 |a 519.5  |2 23 
245 0 0 |a Nonparametric Statistics :  |b 3rd ISNPS, Avignon, France, June 2016  |c edited by Patrice Bertail, Delphine Blanke, Pierre-André Cornillon, Eric Matzner-Løber. 
250 |a 1st ed. 2018. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018 
300 |a IX, 390 p. 53 illus., 26 illus. in color.  |b online forrás 
336 |a szöveg  |b txt  |2 rdacontent 
337 |a számítógépes  |b c  |2 rdamedia 
338 |a távoli hozzáférés  |b cr  |2 rdacarrier 
347 |a szövegfájl  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 250 
505 0 |a Symmetrizing k-nn and Mutual k-nn Smoothers (P. A. Cornillon, A. Gribinski, N. Hengartner, T. Kerdreux and E. Matzner-Løber) -- Multiplicative Bias Corrected Nonparametric Smoothers (N. Hengartner, E. Matzner-Løber, L. Rouvière and T. Burr) -- Nonparametric PU Learning of State Estimation in Markov Switching Model (A. Dobrovidov and V. Vasilyev) -- Nonparametric Lower Bounds and Information Functions (S. Y. Novak) -- Efficiency of the V-fold Model Selection for Localized Bases (F. Navarro and A. Saumard) -- Modification of Moment-based Tail Index Estimator: Sums versus Maxima (N. Markovich and M. Vaičiulis) -- Constructing Confidence Sets for the Matrix Completion Problem (A. Carpentier, O. Klopp and M. Löffler) -- PAC-Bayesian Aggregation of Affine Estimators (L. Montuelle and E. Le Pennec) -- A Nonparametric Classification Algorithm Based on Optimized Templates (J. Kalina) -- Light- and Heavy-tailed Density Estimation by Gamma-Weibull Kernel (L. Markovich) -- Adaptive Estimation of Heavy Tail Distributions with Application to Hall Model (D. N. Politis, V. A. Vasiliev, S. E. Vorobeychikov) -- Extremal Index for a Class of Heavy-tailed Stochastic Processes in Risk Theory (C. Tillier) -- Elemental Estimates, Influence, and Algorithmic Leveraging (K. Knight) -- Bootstrapping Nonparametric M-Smoothers with Independent Error Terms (M. Maciak) -- Probability Bounds for Active Learning in the Regression Problem (A. K. Fermin and C. Ludeña) -- Subsampling for Big Data: Some Recent Advances (P. Bertail, O. Jelassi, J. Tressou and M. Zetlaoui) -- Extension Sampling Designs for Big Networks: Application to Twitter (A. Rebecq) -- Strong Separability in Circulant SSA (J. Bógalo, P. Poncela and E. Senra) -- Selection of Window Length in Singular Spectrum Analysis of a Time Series (P. Unnikrishnan and V. Jothiprakash) -- Fourier-type Monitoring Procedures for Strict Stationarity (S. Lee, S. G. Meintanis and C. Pretorius) -- Wavelet Whittle Estimation in Multiva 
520 |a This volume presents the latest advances and trends in nonparametric statistics, and gathers selected and peer-reviewed contributions from the 3rd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Avignon, France on June 11-16, 2016. It covers a broad range of nonparametric statistical methods, from density estimation, survey sampling, resampling methods, kernel methods and extreme values, to statistical learning and classification, both in the standard i.i.d. case and for dependent data, including big data. The International Society for Nonparametric Statistics is uniquely global, and its international conferences are intended to foster the exchange of ideas and the latest advances among researchers from around the world, in cooperation with established statistical societies such as the Institute of Mathematical Statistics, the Bernoulli Society and the International Statistical Institute. The 3rd ISNPS conference in Avignon attracted more than 400 researchers from around the globe, and contributed to the further development and dissemination of nonparametric statistics knowledge. 
580 |a Nyomtatott kiadás: ISBN 9783319969404 
580 |a Nyomtatott kiadás: ISBN 9783319969428 
506 |a Az e-könyvek a teljes ELTE IP-tartományon belül online elérhetők. 
598 |a könyv 
595 |a e-book 
650 0 |a Mathematical statistics. 
650 0 |a Statistics. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Statistics for Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
653 |a elektronikus könyv 
700 1 |a Bertail, Patrice.  |e szerkesztő  |4 edt  |4 
700 1 |a Blanke, Delphine.  |e szerkesztő  |4 edt  |4 
700 1 |a Cornillon, Pierre-André.  |e szerkesztő  |4 edt  |4 
700 1 |a Matzner-Løber, Eric.  |e szerkesztő  |4 edt  |4 
710 2 |a SpringerLink (Online service)  |e közreadó testület 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 250 
856 4 0 |y Online változat  |u 
850 |a B2 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018